

André Pereira Lima

Comportamento de uma escavação grampeada em solo residual de gnaisse

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

Orientador: Prof. Alberto S. F. J. Sayão Co-orientadora: Prof^a Anna Laura L. S. Nunes

> Rio de Janeiro Abril de 2007

André Pereira Lima

Comportamento de uma escavação grampeada em solo residual de gnaisse

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Geotecnia. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto Sampaio Ferraz Jardim Sayão Orientador, Departamento de Engenharia Civil – PUC-Rio

Prof^a Anna Laura Lopes da Silva Nunes

Co-orientadora, COPPE/UFRJ

Dr. Leandro de Moura Costa Filho LPS Consultoria e Engenharia Ltda.

Prof. Waldemar Coelho Hachich

Escola Politécnica da USP

Prof. Pedricto Rocha Filho Departamento de Engenharia Civil – PUC-Rio

Prof. Sérgio Augusto Barreto da Fontoura Departamento de Engenharia Civil – PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 17 de Abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

André Pereira Lima

Graduou-se em Engenharia Civil, pela Universidade do Estado do Rio de Janeiro (UERJ), em 1999. Participou como engenheiro geotécnico em diversos projetos entre 1999 e 2007. Concluiu o Mestrado em Engenharia Civil (Geotecnia) na PUC-Rio (2002), desenvolvendo pesquisa sobre modelagem numérica de escavações grampeadas. Publicou trabalhos em congressos no Brasil e no exterior, participando de eventos nacionais e internacionais relacionados à Mecânica dos Solos. Ingressou no curso de Doutorado em Engenharia Civil (Geotecnia) em 2002, atuando na área de Geotecnia Experimental e Geomecânica Computacional. Atualmente é professor de Mecânica dos Solos I e II no curso de Engenharia Civil da Universidade Veiga de Almeida (UVA).

Ficha Catalográfica

Lima, André Pereira

Comportamento de uma escavação grampeada em solo residual de gnaisse / André Pereira Lima; orientador: Alberto S. F. J. Sayão; co-orientadora: Anna Laura L. S. Nunes. – 2007.

v., 431f. : il. ; 30 cm

Tese (Doutorado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia.

 Engenharia Civil – Teses. 2. Solo grampeado.
 Escavação. 4. Instrumentação. 5. Solo residual.
 Mecânica dos solos. I. Sayão, Alberto S. F. J. II. Nunes, Anna Laura L. S. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título. PUC-Rio - Certificação Digital Nº 0221071/CA

Dedico esta tese aos meus pais, Silio e Odete, a minha noiva Michele e a minha irmã Martha.

Agradecimentos

Aos meus orientadores professor Alberto S. F. J. Sayão e professora Anna Laura N. S. Nunes pela confiança depositada em mim. Meus sinceros agradecimentos ao apoio nas horas difíceis, às contribuições durante a pesquisa e, principalmente, pela amizade, respeito e orientação recebida.

À empresa SEEL Engenharia Ltda. por sua brilhante iniciativa de parceria com a universidade, que possibilitou o desenvolvimento desta pesquisa. Em particular, meus agradecimentos ao Eng. Paulo Henrique pelo incentivo, críticas e sugestões no decorrer deste trabalho. Agradeço também a todos os funcionários da obra pelo apoio fundamental nas etapas do monitoramento, em especial aos engenheiros Luiz Eduardo, Eduardo França e Fernando Medina, e ao mestre de obras Edinho.

A todos os professores do Departamento de Engenharia Civil da PUC-Rio, pela agradável convivência e pelos conceitos transmitidos ao longo de todo o curso de doutorado.

À professora Denise M. S. Gerscovich (UERJ) pelas contribuições na fase inicial da pesquisa.

Ao professor Tácio Mauro P. de Campos (PUC-Rio) e ao Eng. William Braga pelo apoio na campanha de ensaios de laboratório.

Ao Dr. Leandro de Moura Costa Filho (LPS Engenharia Ltda.) pelas discussões acerca da Mecânica dos Solos.

Ao geólogo Alex Gomes (COPPE/UFRJ) pela descrição da geologia local. Seus mapas e modelos geológicos-geotécnicos foram indispensáveis às análises realizadas.

À Eng^a Fernanda O. Springer (PUC-Rio) pela sua colaboração na fase de instrumentação.

Ao amigo e doutorando Alexandre Saré que foi parceiro em todas as etapas deste trabalho. Obrigado pelo seu apoio no campo.

Aos colegas da PUC-Rio pela convivência harmoniosa. Em especial, agradeço a Tiago, Bernadete, Mônica e Taíse pela ajuda durante a campanha experimental.

A todos os funcionários do DEC, em particular Rita, Fátima, Cristiano, Lenílson, José Raimundo, Amaury e Josué.

Ao CNPq pela ajuda financeira indispensável ao desenvolvimento deste trabalho.

À minha querida noiva Michele por seu apoio em todos os momentos difíceis e por ter compreendido a minha ausência durante o desenvolvimento desta pesquisa. Seu amor foi força vital nesta longa jornada.

Aos meus amados pais, pessoas maravilhosas que contribuíram para esta difícil conquista. Meus agradecimentos por todo o amor recebido destas duas pessoas que sempre me confortaram nestes anos de dedicação à tese. Obrigado por tudo!

À minha maravilhosa família, em especial à minha irmã Martha.

A Deus, por sua luz ao longo de toda a minha vida.

Resumo

Lima, André Pereira; Sayão, Alberto de Sampaio Ferraz Jardim; Nunes, Anna Laura Lopes da Silva. **Comportamento de uma escavação grampeada em solo residual de gnaisse**. Rio de Janeiro, 2007. 431p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O comportamento de uma escavação grampeada em solo residual de gnaisse foi avaliado por um programa de monitoramento geotécnico do maciço reforçado. Diversas obras estão sendo realizadas no país, sem conhecimentos detalhados sobre as deformações inerentes à técnica e sobre os mecanismos de interação solo-grampo. No Brasil, menos de 10% das obras de solo grampeado utilizaram algum tipo de instrumentação. Esta pesquisa teve por objetivo a análise de uma escavação em solo residual reforçada com grampos. A escavação foi instrumentada para o monitoramento dos deslocamentos do maciço e dos esforços nos grampos. Um extenso programa experimental de ensaios de campo e laboratório foi executado para fornecer os parâmetros geotécnicos utilizados nas análises computacionais. A escavação grampeada teve cerca de 40m de altura, constituindo uma experiência inédita no país e talvez no mundo. Devido a esta altura, os grampos superiores foram instalados com comprimentos de até 24m. O comportamento do talude foi influenciado pelo processo executivo e por uma outra escavação no terreno vizinho. O monitoramento indicou que os deslocamentos do maciço e os esforços nos grampos cresceram significativamente com o avanço da escavação e não cessaram ao final da obra. Os grampos trabalharam predominantemente à tração, com momentos fletores pouco significativos. Os valores de tração estimados na fase de projeto diferiram dos resultados obtidos na instrumentação. A distribuição dos esforços de tração foi influenciada pelas características geológicas do maciço. A tração máxima (T_{máx}) teve uma posição variando com a profundidade e a inclinação do talude, e uma magnitude aumentando exponencialmente com o avanço da escavação. A tração na face (T_o) foi de 0,3 a 0,6 de T_{máx}. A resistência mobilizada no contacto solo-grampo não ultrapassou 35% do valor de q_s medido nos ensaios de campo.

Palavras-chave

Solo Grampeado; Escavação; Instrumentação; Solo Residual.

Abstract

Lima, André Pereira; Sayão, Alberto de Sampaio Ferraz Jardim (Advisor); Nunes, Anna Laura Lopes da Silva (Advisor). **Behaviour of a nailed excavation in gneissic residual soil**. Rio de Janeiro, 2007. 431p. Doctoral Thesis - Civil Engineering Department, Catholic University of Rio de Janeiro.

The behavior of a nailed excavation in gneissic residual soil has been studied by a comprehensive research program, including instrumentation, field and laboratory tests and numerical analyses. Soil nailing is becoming a popular stabilization technique in Brazil. However, a solid knowledge about the soil-nail interaction is still lacking. There are a few studies about the inherent deformations of the reinforced mass and the magnitude of nail's stresses. In Brazil, less than 10% of stabilization works have some type of instrumentation. The main objective of this research was monitoring and analysing a 40m high soil nailed slope excavation.

Due to this unique height, the upper nails were installed with 24m length. The slope behavior was influenced by several factors, such as the construction technique and a subsequent excavation at one adjacent site. The results indicated a significant increase of reinforced mass displacements and of the nail's mobilized tension during the progress of the excavation. These did not cease after the end of the excavation, due to the adjacent work. During and after construction, the nails worked predominantly in tension. Estimated tension loads in the project phase were compared with the instrumentation's results. The stress distribution was influenced by local geology. The maximum axial force (T_{max}) increased exponentially with the progress of the excavation and its position, in each nail, varies with the slope's depth and inclination. The magnitude of the axial load in the excavation face is observed to be between 0,3 and 0,6 of T_{max} .

Keywords

Soil Nailing; Excavation; Instrumentation; Residual Soil.

Sumário

1.Introdução	32
2. Solo Grampeado: definições, desenvolvimento e aplicações	34
2.1.Histórico e desenvolvimento	34
2.1.1.Origens do solo grampeado	34
2.1.2.Definição da técnica	35
2.1.3.Critérios de aplicação	37
2.1.4.Metodologia executiva, equipamentos e materiais de construção	38
2.1.5.Aplicação da técnica no exterior	54
2.1.6.Aplicação da técnica no Brasil	56
2.1.7.Vantagens e limitações do solo grampeado	67
2.1.8.Comparação com outros sistemas de estabilização	71
2.1.9.Durabilidade de estruturas grampeadas	75
3.Solo Grampeado: ensaios, mecanismos e monitoramento	77
3.1.Ensaios de arrancamento	77
3.1.1.Conceitos	77
3.1.2.Descrição do ensaio	79
3.1.3.Resultados típicos e estimativas de q _s	80
3.1.4.Correlações empíricas a partir de valores de q _s	86
3.2.Mecanismos e comportamento de taludes grampeados	91
3.2.1.Interação solo / grampo	92
3.2.2.Mobilização da resistência ao cisalhamento ao longo do grampo	94
3.2.3.Distribuição de tensão nos grampos e no solo reforçado	95
3.2.4.Estado de tensões no maciço de solo grampeado	_ 101
3.2.5.Mobilização da resistência à flexão dos grampos	_ 102

3.2.6.Deformações e deslocamentos na face do solo grampeado	103
3.2.7.Influência da face na estabilidade	106
3.3.Dimensionamento de taludes grampeados	107
3.3.1.Tipos de ruptura de taludes em solo grampeado	107
3.3.2.Parâmetros preliminares	109
3.3.3.Métodos de dimensionamento	114
3.3.4.Comparação entre métodos	124
3.3.5.Análises tensão-deformação	124
3.3.6.Considerações especiais de projeto	126
3.4.Obras de solo grampeado instrumentadas	127
3.4.1.Parâmetros a serem monitorados	127
3.4.2.Instrumentos típicos de monitoramento de taludes grampeados	128
3.4.3.Métodos de monitoramento	139
3.4.4.Casos históricos de taludes instrumentados	140
4.Descrição de uma escavação grampeada em solo residual de gnaisse	151
4.1.Introdução	151
4.2.Geologia local	152
4.3.Concepção do projeto	160
4.4.Descrição da obra	165
5.Investigação geotécnica	180
5.1.Introdução	180
5.2.Programa experimental	180
5.2.1.Programação geral	180
5.2.2.Densidade dos grãos	183
5.2.3.Caracterização geotécnica e classificação do material	184
5.2.4.Curva característica	190
5.2.5.Compressão confinada	194

5.2.6.Cisalhamento direto	201
5.2.7.Ensaios triaxiais	207
5.3.Monitoramento geotécnico da obra	234
5.3.1.Inclinômetros	237
5.3.2. "Tell tales"	242
5.3.3. "Strain-gauges"	244
6.Estudo do comportamento de uma escavação grampeada em residual de gnaisse	solo _258
6.1.Análises adicionais em Equilíbrio Limite	258
6.2.Resultados da instrumentação e monitoramento	265
6.2.1.Deslocamentos horizontais no talude fornecidos pelos inclinômetros	265
6.2.2.Deslocamentos horizontais no talude grampeado fornecidos pelos "tell tales" _	275
6.2.3.Esforços de tração nos grampos	278
6.2.4.Momentos fletores nos grampos	280
6.3.Análises das deformações na escavação grampeada e das solicitações grampos	s nos _283
6.3.1.Avaliação dos deslocamentos durante a escavação e após o grampeamen solo	to do 284
6.3.2.Avaliação das solicitações nos grampos durante a construção e em serviço	295
6.3.3.Distribuição das tensões nos grampos e ponto de tração máxima	300
6.3.4.Magnitude das forças de tração máxima nos grampos	304
6.3.5.Comparação dos valores de tração medidos com os estin na fase de projeto	ados 307
6.3.6.Tração na face	311
6.3.7.Estado de tensões no maciço grampeado	313
6.3.8.Influência de alguns aspectos executivos	316
7.Conclusões e recomendações	330
7.1.Ensaios de laboratório	330
7.2.Desempenho da instrumentação e monitoramento geotécnico	333

7.3.Considerações sobre a escavação grampeada em solo residual de gnaisse	334
7.4.Sugestões	339
8.Referências bibliográficas	340
Apêndice 01: Resultados do programa experimental	366
Apêndice 02: Determinação dos parâmetros de deformabilidade em o triaxiais	ensaios 390
Apêndice 03: Resultados do monitoramento geotécnico com "tell tales"	392
Apêndice 04: Resultados do monitoramento geotécnico com "strain-gauges	"_ 398
Apêndice 05: Desempenho dos grampos instrumentados à flexão	417

Lista de figuras

Figura 1. Técnicas de execução de túneis com revestimento rígido e flexível _	35
Figura 2. Aplicações de sistemas de reforço de solo	36
Figura 3. Aplicações usuais de solo grampeado	38
Figura 4. Construção de estrutura em solo grampeado em escavações o equipamentos mecânicos	om 39
Figura 5. Principais etapas construtivas em escavações grampeadas	39
Figura 6. Escavações em bancadas	41
Figura 7. Tipos de cabeça dos grampos	42
Figura 8. Processo Titan (Dywidag) de instalação do reforço	. 46
Figura 9. Grampos aparafusados	47
Figura 10. Revestimento da parede de solo grampeado	48
Figura 11. Suporte circular usando a técnica de solo grampeado	. 49
Figura 12. Placas pré-moldadas em talude de solo residual	49
Figura 13. Resistência à compressão simples do concreto projetado	50
Figura 14. Drenos subhorizontais profundos	51
Figura 15. Drenagem superficial com barbacã	52
Figura 16. Drenagem superficial com dreno do paramento	52
Figura 17. Canaletas de crista em estruturas de solo grampeado	53
Figura 18. Primeira estrutura em solo grampeado na França	54
Figura 19. Estruturas grampeadas na França	55
Figura 20. Contenção de taludes de emboques em 1970	57
Figura 21. Escavação estabilizada com grampos e tirantes em Niterói - RJ	58
Figura 22. Talude grampeado sob a fundação de viaduto ferroviário	58
Figura 23. Muro experimental no Morro da Formiga	59
Figura 24. Talude grampeado, Av. Automóvel Clube	59
Figura 25. Solo grampeado, Linha Amarela - RJ	60
Figura 26. Solo grampeado em Niterói - RJ	62
Figura 27. Classificação em ordem crescente de custos das estruturas contenção estudadas	de 68
Figura 28. Comparação entre solo-grampeado e estaca-raíz	71

Figura 29. Deslocamentos horizontais máximos em estruturas de grampeado e terra armada	solo _ 72
Figura 30. Mecanismos de transferência de carga	_ 74
Figura 31. Estruturas mistas	_ 75
Figura 32. Ensaio de arrancamento	_ 78
Figura 33. Correlações empíricas para q _s em areias	_ 86
Figura 34. Correlações empíricas para q_s em argilas e siltes	_ 87
Figura 35. Correlação entre q_s e p_1 para solos arenosos	_ 87
Figura 36. Correlação entre q_s e p_1 para solos argilosos	_ 88
Figura 37. Correlações empíricas para q _s	_ 88
Figura 38. Correlações entre q_s e número de golpes N(SPT) para solo reside gnaisse	dual _ 90
Figura 39. Grampos submetidos à flexão e esforços cisalhantes	_ 93
Figura 40. Modelagem da curva experimental do ensaio de arrancamento per de Fran e Zhao	a lei _ 94
Figura 41. Mobilização da resistência ao cisalhamento ao longo do grampo_	_ 95
Figura 42. Distribuição de tensões e deslocamentos em taludes grampeados	96
Figura 43. Esforços axiais na cabeça de um grampo durante as sucessivas fa de escavação	ases _ 97
Figura 44. Definição das zonas ativa e passiva em escavações com gran livres	າpos _ 98
Figura 45. Definição de uma possível superfície de ruptura	_ 98
Figura 46. Distribuição simplificada dos esforços axiais nos grampos	_ 99
Figura 47. Força axial máxima normalizada em 11 obras	100
Figura 48. Estado de tensões no solo grampeado	102
Figura 49. Esquema das deformações em taludes grampeados	104
Figura 50. Deslocamentos na face de muros instrumentados	105
Figura 51. Variação dos deslocamentos na face de muros instrumentados	105
Figura 52. Mecanismos de ruptura no estado limite último	107
Figura 53. Ruptura devido à altura elevada nas etapas de escavação em a de "Fontainebleau" com ϕ =38° e c=4kPa	areia 109
Figura 54. Otimização de comprimento dos grampos	110
Figura 55. Modelo de análise dos parâmetros de solo grampeado	111

Figura 56. Parâmetros de projetos de taludes grampeados em solos resi brasileiros	duais _ 112
Figura 57. Influência da rigidez dos grampos no reforço	_ 118
Figura 58. Modos de instabilização externa	_ 122
Figura 59. Medidor de nível d'água	_ 129
Figura 60. Piezômetro Casagrande	_ 130
Figura 61. Configuração com 3 "tell tales" (GCO, 1979).	_ 131
Figura 62. Etapas de instalação do tubo de acesso (Ortigão e Sayão, 2000).	132
Figura 63. Indicação das leituras do inclinômetro.	_ 133
Figura 64. Princípio de funcionamento do inclinômetro	_ 133
Figura 65. Equipamento de inclinômetro tipo "Digitilt"	_ 134
Figura 66. Tipos de "strain-gauges"	_ 138
Figura 67. Esquema da instrumentação	_ 140
Figura 68. Escavação experimental em solo grampeado	_ 142
Figura 69. Geometria do talude	_ 142
Figura 70. Seção típica instrumentada	_ 143
Figura 71. Seção instrumentada	_ 144
Figura 72. Obra instrumentada na Inglaterra	_ 145
Figura 73. Força axial em cada "strain-gauge" vs. tempo	_ 146
Figura 74. Obra experimental instrumentada no RJ	_ 148
Figura 75. Detalhes da obra experimental em solo grampeado	_ 150
Figura 76. Localização das obras "Museu 0", "Museu 1" e "Museu 2"	_ 152
Figura 77. Localização da obra "Museu 1"	_ 152
Figura 78. Mapa geológico-estrutural da área das obras "Museu "Museu 2"	1" e _ 154
Figura 79. Vista geral da área das obras "Museu 1" e "Museu 2" em foto aéro escala 1:8.000	ea na _ 155
Figura 80. Detalhe do talude em 11/12/2003	_ 156
Figura 81. Localização dos perfis transversais das obras "Museu "Museu 2"	1"e _158
Figura 82. Perfil geológico-geotécnico M1-M1' da obra "Museu 1"	_ 159
Figura 83. Levantamento topográfico da obra "Museu 1"	_ 160
Figura 84. Seção-tipo de projeto (seção 03)	_161

Figura 85. Avaliação preliminar do total de reforços por seção	_ 163
Figura 86. Seção-tipo da solução de estabilização recomendada	_ 164
Figura 87. Variação do fator de segurança em função do atrito unitário grampo (q_s)	solo- _ 165
Figura 88. Concepção do projeto	_ 166
Figura 89. Vista do talude grampeado (Faces A, B, C, D e E)	_ 167
Figura 90. Vista do talude grampeado (Faces F, G e H)	_ 168
Figura 91. Vista geral das etapas construtivas	_ 169
Figura 92. Histograma da altura da escavação em função da data da escav das seções instrumentadas A e B	′ação _ 170
Figura 93. Processo de escavação - Face C	_ 171
Figura 94. Processo de escavação - Face G	_ 172
Figura 95. Seqüência da perfuração para colocação dos grampos - Face C	_ 173
Figura 96. Seqüência da perfuração para colocação dos grampos - Face G	_ 174
Figura 97. Tempo médio de perfuração dos grampos	_ 174
Figura 98. Seqüência do processo de injeção dos grampos - Face C	_ 175
Figura 99. Seqüência do processo de injeção dos grampos - Face G	_ 176
Figura 100. Tempo médio de injeção dos grampos	_ 176
Figura 101 Seqüência da aplicação da "pressão de incorporação" nos gra da Face G	mpos _ 177
Figura 102. Fases da obra	_ 179
Figura 103. Processo de obtenção das amostras indeformadas	_ 182
Figura 104. Modelo geológico-geotécnico 3D da face C – "Museu 1"	_ 186
Figura 105. Perfis geológico-geotécnicos longitudinais das colunas A e B, fa – "Museu 1"	ace C _ 187
Figura 106. Modelo geológico-geotécnico 3D da face G – "Museu 1"	_ 188
Figura 107. Perfis geológico-geotécnicos longitudinais das colunas A e B, fa – "Museu 1"	ice G _ 189
Figura 108. Variação de ϕ^b / ϕ^i com o nível de sucção em ensaio cisalhamento direto	s de _ 190
Figura 109. Curva Características	_ 193
Figura 110. Corpos de prova dos ensaios de compressão confinada	_ 194
Figura 111. Curva e x log σ'_{v} - Bloco B2M (solo residual maduro)	_ 199

Figura 112. Curva e x log σ'_v - Bloco B6M (solo residual jovem)	199
Figura 113. Prensa de deformação controlada utilizada pelo laboratório geotecnia da PUC-Rio	o de 202
Figura 114. Corpos de prova moldados para os ensaios cisalhamento direto	de 203
Figura 115. Envoltória de resistência ao cisalhamento do solo residual ma (Bloco B2M)	duro 205
Figura 116. Efeito da direção do bandeamento na envoltória de resistênci cisalhamento (solo residual jovem - Bloco B5M)	a ao 206
Figura 117. Envoltória de resistência ao cisalhamento do solo residual jo (Bloco B5M)	vem 207
Figura 118. Corpos de prova (208
Figura 119. Prensa triaxial de deformação controlada utilizada pelo laboratóri geotecnia da PUC-Rio	o de 210
Figura 120. Trajetórias de tensões - Ensaio E1 a E4 (Bloco B2M)	214
Figura 121. Trajetórias de tensões - Ensaio E1-E2 e E5-E6-E7 (Bloco B6M)	217
Figura 122. Trajetórias de tensões - Ensaios E3-E4 e E5-E6-E7 (Bloco B6M)	219
Figura 123. Trajetórias de tensões - Ensaio E8-E9-E10 (Bloco B6M)	221
Figura 124. Prensa triaxial de tensão controlada	222
Figura 125. Trajetórias de tensões seguidas - Ensaio E1-E2-E3 e E4-E (Bloco B3MS)	5-E6 224
Figura 126. Trajetórias de tensões seguidas - Ensaio E1-E2-E3 e E4-E (Bloco B6MS)	5-E6 226
Figura 127. Comparação entre os módulos de deformabilidade E_{50} para ensaios CID e CID-E (corpos de prova saturados)	a os 230
Figura 128. Envoltória transformada - ensaios triaxiais (solo residual madu CPs saturados)	uro - 231
Figura 129. Envoltória transformada - ensaios triaxiais (solo residual jove CPs saturados)	em - 232
Figura 130. Localização das colunas A e B de grampos instrumentados	235
Figura 131. Posição dos grampos instrumentados (Cii e Gii), caixas de tales" (Cx. TTi) e inclinômetros (li)	"tell 236
Figura 132. Seção-tipo instrumentada com grampos com "strain-gauges" (Gii), "tell tales" (Cx. "Tell Tale" i) e inclinômetros (I1 e I2)	Cii e 236
Figura 133. Localização e orientação dos tubos de inclinômetros instalados_	238
Figura 134. Detalhes da instalação e operação do inclinômetro	240
Figura 135. Hipóteses de cálculo dos deslocamentos do inclinômetro I1	241

Figura 136. Esquema da instrumentação com "tell tales" 242
Figura 137. Detalhes da instalação e operação com o "tell tales" 243
Figura 138. Posicionamento dos "strain-gauges" nas barras instrumentadas 246
Figura 139. Extensômetro colável de resistência elétrica unidirecional simples246
Figura 140. Detalhes da instrumentação dos grampos no galpão 249
Figura 141. Detalhes da instalação das barras instrumentadas 250
Figura 142. Ponte de Wheatstone com extensômetro elétrico (R_g) e fio compensador (L_2) com mesmo comprimento de L_1 e L_3 , (¹ / ₄ de ponte com 3 fios)251
Figura 143. Detalhes dos equipamentos utilizados para instrumentação dos grampos252
Figura 144. Arranjo da instrumentação de campo e aquisição de dados 253
Figura 145. Detalhes do sistema de aquisição de dados no campo dos grampos 253
Figura 146. Sistema dos ensaios de calibração das barras 254
Figura 147. Instrumentação de uma barra de aço submetida à flexão 256
Figura 148. Solução de estabilização ao final da construção (seção-tipo) 259
Figura 149. Fatores de segurança globais (FS) do "Museu 1" para os diferentes níveis de sucção de camp 263
Figura 150. Esforços axiais máximos em cada grampo instrumentado para os diferentes níveis de sucção de campo 265
Figura 151. Deslocamentos horizontais na direção principal do Inclinômetro I1 - Hipótese 1 267
Figura 152. Deslocamentos horizontais na direção principal do Inclinômetro I1 - Hipótese 2 268
Figura 153. Deslocamentos horizontais na direção principal do Inclinômetro I2269
Figura 154. Deslocamentos horizontais na direção secundária do Inclinômetro I1 - Hipótese 1272
Figura 155. Deslocamentos horizontais na direção secundária do Inclinômetro I1 - Hipótese 2273
Figura 156. Deslocamentos horizontais na direção secundária do Inclinômetro I2 274
Figura 157. Deslocamentos fornecidos pelos "tell tales" da caixa 1 - Face C_ 276
Figura 158. Deslocamentos fornecidos pelos "tell tales" da caixa 5 - Face G_ 277
Figura 159. Força de tração nos grampos C07 e C09 a 3m da face - SG1s _ 278

Figura 160. Força de tração nos grampos G07 e G09 a 3m da face - SG1s $_$ 279
Figura 161. Avaliação da flexão no grampo C07 a 3m da face - SG1 281
Figura 162. Avaliação da flexão no grampo G07 a 3m da face - SG1 282
Figura 163. Deslocamento horizontal máximo fornecido pelos inclinômetros (direção principal) 285
Figura 164. Deslocamento horizontal máximo fornecido pelos inclinômetros (direção secundária) 286
Figura 165. Deslocamento horizontal máximo observado em taludes grampeados289
Figura 166. A evolução da movimentação horizontal máxima, durante os sucessivos estágios de escavação 290
Figura 167. Estimativa da movimentação horizontal máxima do talude grampeado 291
Figura 168. Deslocamento dos "tell tales" em 3 fases do monitoramento 293
Figura 169. Região de maiores deslocamentos fornecidos pelos "tell tales" _ 294
Figura 170. Força axial, ao longo do grampo C07 durante todo o monitoramento 296
Figura 171. Força axial ao longo do grampo G07 durante todo o monitoramento 296
Figura 172. Distribuição das forças axiais nos grampos instrumentados em 3 fases do monitoramento 299
Figura 173. Determinação da região de máximos esforços (T=T _{máx}) ao final da construção 301
Figura 174. Comparação das superfícies potenciais de ruptura (Instrumentação x Equilíbrio Limite) 303
Figura 175. Força de tração máxima (F _{máx}) durante todo o monitoramento 305
Figura 176. Força de tração máxima normalizada (F _{máx} / F _{esc}) durante a escavação em solo grampeado 306
Figura 177. Força de tração máxima normalizada (F _{máx} / F _{esc}) em escavação grampeadas em solo residual de gnaisse 307
Figura 178. Distribuição dos esforços axiais nos grampos (4 hipóteses de cálculo) 309
Figura 179. Mobilização da resistência ao cisalhamento solo-grampo (q_s) 311
Figura 180. Relação entre a tração na face (T_o) e tração máxima $(T_{máx})$ vs. profundidade (z) do reforço normalizada pela altura total da escavação (H) _ 312
Figura 181. Comparação entre as forças de tração medidas na face do talude (x=1m), ao final da construção e em serviço e as calculadas pela FHWA 312

Figura 182. Variação da força de tração máxima nos grampos com a profundidade (final da construção e em serviço)______ 314 Figura 183. Força axial máxima normalizada (F^N_{máx}) vs. z/H para a estrutura em serviço ______ 315 Figura 184. Vista do talude grampeado - Face G ______ 317 Figura 185. Deslocamentos horizontais na direção principal 318 Figura 186. Deslocamentos fornecidos pelos "tell tales" durante o processo de escavação acelerada______ 319 Figura 187. Mobilização dos grampos instrumentados durante o processo de escavação acelerada______ 320 Figura 188. Deslocamentos horizontais máximos no talude (direção principal), período de Maio a Julho de 2004 _____ 322 Figura 189. Tração a 1m da face (grampo G07), período de Maio a Julho de 2004 ______ 322 Figura 190. Monitoramento dos grampos da coluna A - face C durante o período de chuva intensa (Julho de 2004) _____ 325 Figura 191. Deslocamentos horizontais na direção principal do Inclinômetro I1 (hipótese 2) em Julho de 2004. _____ 326 Figura 192. Deslocamentos fornecidos pelos "tell tales" em Julho de 2004 327 Figura 193. Deslocamentos horizontais na direção secundária devidos às escavações do "Museu 2" ______ 328 Figura 194. Variação da força axial máxima nos grampos instrumentados devidas às escavações do "Museu 2" ______ 329

Lista de tabelas

Tabela 1. Tipo de solicitação em reforço de solo	36
Tabela 2. Aplicações e objetivos de um sistema de reforço	36
Tabela 3. Altura das etapas de escavação	40
Tabela 4. Tipos de grampos utilizados no Brasil	43
Tabela 5. Dimensões e propriedades típicas de grampos injetados em obras Europa	na 44
Tabela 6. Dimensões de grampos injetados em obras na América do Norte	44
Tabela 7. Parâmetros típicos de maciços grampeados em obi internacionais	ras 56
Tabela 8. Parâmetros típicos de maciços grampeados (solos diversos) em obracionais	ras 63
Tabela 9. Parâmetros típicos de maciços grampeados (solos diversos) em obracionais	ras 64
Tabela 10. Parâmetros típicos de maciços grampeados (solos diversos) obras nacionais	em 65
Tabela 11. Parâmetros típicos de maciços grampeados (solos diversos) obras nacionais	em 65
Tabela 12. Custo médio para execução de solo grampeado nos EUA	68
Tabela 13. Espessuras extras em função do tempo de vida útil da estrutura	76
Tabela 14. Número de ensaios de arrancamento recomendado pelo Proje Clouterre	eto 79
Tabela 15. Estimativa da resistência ao cisalhamento no conta solo-grampo, q _s	ato 81
Tabela 16. Ensaios de arrancamento em solos brasileiros	84
Tabela 17. Determinação de q _s por correlações empíricas	90
Tabela 18. Valores típicos de κ e deslocamentos verticais e horizontais máxim baseados em resultados empíricos1	10S 04
Tabela 19. Índices característicos das obras internacionais em solo granu grampeado com inclinação superior a 80° 1	ılar 11
Tabela 20. Índices característicos em obras com grampos injetados na G Bretanha1	rã- 11
Tabela 21. Valores típicos de projetos em estruturas de solo grampeado - H≤5 solos homogêneos, sem NA, sem sobrecargas, paramento vertical, gramp injetados1	im, oos 12

Tabela 22. Características dos métodos de cálculo em solo grampeado	_ 116
Tabela 23. Características das descontinuidades do talude	156
Tabela 24. Sondagens na obra "Museu 1"	157
Tabela 25. Resumo das análises realizadas na fase de projeto	162
Tabela 26. Propriedades geomecânicas dos solos nas análises numéricas _	163
Tabela 27. Quadro-resumo das análises realizadas	164
Tabela 28. Resumo dos detalhes executivos	178
Tabela 29. Ensaios de laboratório realizados	181
Tabela 30. Descrição e localização das amostras coletadas	182
Tabela 31. Densidade dos grãos	183
Tabela 32. Resultados dos ensaios de caracterização	184
Tabela 33. Dados do corpo de prova (solo residual maduro - B2M)	197
Tabela 34. Dados do corpo de prova (solo residual jovem - B6M)	197
Tabela 35. Resultados do ensaio de compressão confinada (solo res maduro - B2M), com correção da deformabilidade do sistema	idual 198
Tabela 36. Resultados do ensaio de compressão confinada (solo resjovem - B6M), com correção da deformabilidade do sistema	idual 198
Tabela 37. Parâmetros de compressibilidade e tensão de escoamento	200
Tabela 38. Características dos corpos de prova dos ensaios de cisalham direto	1ento 203
Tabela 39. Parâmetros de resistência ao cisalhamento do solo residual	206
Tabela 40. Campanha experimental de ensaios triaxiais CID e CID-E	209
Tabela 41. Índices físicos dos corpos de prova do bloco B2M (solo res maduro)	idual 212
Tabela 42. Resultados dos ensaios triaxiais drenados - bloco B2M (solo res maduro)	idual 214
Tabela 43. Identificação dos ensaios realizados no bloco B6M (solo res	idual 215
Tabela 44. Índices físicos dos corpos de prova do bloco B6M (solo res jovem)	idual 216
Tabela 45. Resultados dos ensaios triaxiais drenados E1-E2 - bloco B6M residual jovem) - CP na umidade natural	(solo _ 217
Tabela 46. Resultados dos ensaios triaxiais drenados E5-E6-E7 - bloco (solo residual jovem) - CP saturado	B6M 217

Tabela 47. Resultados dos ensaios triaxiais drenados E3-E4 e E5-E6-E7 - blo B6M (solo residual jovem) 2)CO 219
Tabela 48. Índices físicos dos corpos de prova do bloco B3MS (solo residumaduro) 2	ual 223
Tabela 49. Resultados dos ensaios triaxiais drenados E1-E2-E3 - bloco B3N (solo residual maduro) 2	MS 224
Tabela 50. Resultados dos ensaios triaxiais drenados E4-E5-E6 - bloco B3N (solo residual maduro) 2	MS 225
Tabela 51. Índices físicos dos corpos de prova do bloco B6MS (solo residujovem)	ual 226
Tabela 52. Resultados dos ensaios triaxiais drenados E1-E2-E3 - bloco B6N (solo residual jovem) 2	MS 227
Tabela 53. Resultados dos ensaios triaxiais drenados E4-E5-E6 - bloco B6N (solo residual jovem) 2	MS 227
Tabela 54. Parâmetros de resistência e deformabilidade (ensaios triaxiais CID CID-E) 2)е 229
Tabela 55. Dados da execução dos furos dos inclinômetros 2	238
Tabela 56. Características da unidade de leitura 2	239
Tabela 57. Características da instrumentação com "tell tales"2	244
Tabela 58. Resumo do processo executivo dos grampos instrumentados 2	245
Tabela 59. Propriedades geomecânicas (novas análises) 2	259
Tabela 60. Resumo das análises complementares realizadas2	260
Tabela 61. Comparação dos valores de índices característicos em obras de segrampeado (grampos injetados)2	olo 261
Tabela 62. Comparação dos valores típicos de projetos em estruturas de se grampeado 2	olo 261
Tabela 63. Resumo dos parâmetros e resultados das análises de estabilida considerando o efeito da sucção2	ade 263
Tabela 64. Deslocamentos horizontais máximos calculados com inclinômetros 2	os 288
Tabela 65. Deslocamentos fornecidos pelos "tell tales" e inclinômetros 2	292

Lista de símbolos

A _s :	Área da seção transversal útil da barra;
a':	Parâmetro efetivo de resistência da envoltória transformada;
A/C:	Fator água-cimento;
a _v :	Coeficiente de compressibilidade;
α:	Ângulo de inclinação do reforço com o plano horizontal (ângulo de instalação);
α':	Parâmetro efetivo de resistência da envoltória transformada;
B:	Largura do bloco monolítico;
<i>B</i> :	Parâmetro de Skempton (1954);
β:	Ângulo de inclinação do talude;
C:	Coesão total ou aparente do solo;
C':	Coesão efetiva do solo;
C _v :	Coeficiente de adensamento do solo;
Ca':	Adesão da interface;
CP w _{nat} :	Corpo de prova cisalhado na umidade natural;
CP w _{sub} :	Corpo de prova cisalhado em condições de submersão em água;
Cx.:	Caixa;
CID:	Ensaio triaxial drenado de carregamento axial;
CID-E:	Ensaio triaxial drenado de descarregamento lateral;
C _c :	Índice de compressão;
C _r :	Índice de recompressão;
CNU:	Coeficiente de não uniformidade;
CC:	Coeficiente de curvatura
CP:	Corpo de prova;
d:	Densidade do grampeamento;
D:	Módulo de compressão edométrica;
DHP:	Dreno subhorizontal profundo;
D _{DEF} :	Distância da estrutura ao topo da escavação onde δ_{h} e δ_{v} são nulos;
D ₁₀ :	Diâmetro abaixo do qual se situam 10% em peso das partículas;
D ₃₀ :	Diâmetro abaixo do qual se situam 30% em peso das partículas;

D ₆₀ :	Diâmetro abaixo do qual se situam 60% em peso das partículas;
δ:	Deslocamento;
δ ₀ :	Deslocamento horizontal máximo na superfície, atrás do bloco;
δ':	Ângulo de atrito da interface;
δ _v :	Deslocamento vertical;
δ _h :	Deslocamento horizontal;
δ_{h}^{max} :	Deslocamento horizontal máximo;
$\delta_{\sf h}^{\sf max}$ (esp):	Deslocamento horizontal máximo esperado;
$\delta_{h}^{dir princ}$	Deslocamento horizontal na direção principal;
$\delta_h^{\text{dir sec}}$:	Deslocamento horizontal na direção secundária;
δ ¹¹ _h :	Deslocamento horizontal fornecido pelo inclinômetro I1;
δ ¹² _h :	Deslocamento horizontal fornecido pelo inclinômetro I2;
ΔL:	Variação de voltagem dos terminais (da ponte de Wheatstone);
ΔR:	Variação de resistência elétrica do fio (em Ohms);
ESC:	Escavação;
EL:	Elevação;
E:	Módulo de elasticidade do solo;
E _{aço} :	Módulo de elasticidade da barra de aço;
E ₅₀ :	Módulo de deformabilidade do solo correspondente à 50% da carga aplicada na ruptura;
ε _{ax} :	Deformação axial;
$\epsilon_{ax_{50}}$:	Deformação axial do solo correspondente à 50% da carga aplicada na ruptura;
ε _{af} :	Deformação axial do solo correspondente à carga aplicada na ruptura;
$\epsilon_{vol_{50}}$:	Deformação volumétrica do solo correspondente à 50% da carga aplicada na ruptura;
ε _ν :	Deformação volumétrica;
e:	Índice de vazios;
e _o :	Índice de vazios inicial;
ε:	Deformação específica;
ε ₁ :	Deformação específica do "strain-gauge" na face superior;

ε2:	Deformação específica do "strain-gauge" na face inferior;
ε _b :	Deformação específica resultante da flexão da barra;
FHWA:	"Federal Highway Administration";
FS:	Fator de segurança;
F _{esc} :	Força de escoamento do aço
F _{máx} :	Força axial máxima no grampo;
F _{axial} :	Força axial no grampo;
F:	Força;
F ^N _{máx} :	Força axial máxima normalizada;
f:	Profundidade da ficha
∲int:	Diâmetro interno (tubo do inclinômetro);
ф _{ср} :	Diâmetro do corpo de prova;
φ _{aço} :	Diâmetro da barra de aço;
φ _{furo} :	Diâmetro do furo do grampo ou do tirante;
ф:	Ângulo de atrito do solo;
φ':	Ângulo de atrito efetivo do solo;
ϕ^{b} :	Ângulo de resistência com relação à variação da sucção mátrica;
G _s :	Densidade real dos grãos;
GL:	Grampo livre;
GF:	Grampo fixo;
Gf:	"Gauge-factor" (constante característica do extensômetro);
γ:	Peso específico do solo;
γs:	Peso específico dos sólidos;
γsat:	Peso específico aparente saturado;
γnat:	Peso específico natural;
γw:	Peso específico da água;
γd:	Peso específico aparente seco;
γ _{do} :	Peso específico aparente seco (inicial);
H:	Altura total do talude ou da escavação;
H _{escav.} :	Incremento de escavação (altura de cada etapa de escavação);
H ^{II} _{SG} :	Altura do talude grampeado onde está instalado o inclinômetro I1;

H_{SG}^{12} :	Altura do talude grampeado onde está instalado o inclinômetro I2;
H ^{SG} _{escav} :	Altura total da escavação em solo grampeado;
H ₁ :	Altura de suporte efetiva;
H _{CP} :	Altura do corpo de prova;
h _{parede} :	Espessura da parede;
IC:	Índice de consistência;
l1:	Inclinômetro 1;
12:	Inclinômetro 2;
ISRM	"International Society for Rock Mechanics";
l _b :	Momento de inércia de uma barra de aço de seção circular;
IRS:	Um estágio de injeção;
IGU:	Múltiplo estágio de injeção;
IP:	Índice de plasticidade do solo;
JRC:	Coeficiente de rugosidade da junta;
k:	Coeficiente de permeabilidade do solo (condutividade hidráulica);
k _β :	Rigidez do grampo;
K _{ST} :	Fator de sensibilidade do "strain-gauge";
К:	Coeficiente que expressa o estado de tensões do maciço grampeado;
K _o :	Coeficiente de empuxo no repouso do solo;
K _a :	Coeficiente de empuxo ativo do solo;
K _p :	Coeficiente de empuxo passivo do solo;
κ:	Coeficiente empírico utilizado na determinação de D _{DEF} ;
Leitura _N :	Leitura fornecida pelo instrumento na direção N;
Leitura _s :	Leitura fornecida pelo instrumento na direção S;
L _{ii} :	Saída da ponte (sinal de saída em Volts);
L:	Comprimento do grampo e/ou do tirante;
LL:	Limite de liquidez do solo;
LP:	Limite de plasticidade do solo;
L _{máx} :	Comprimento máximo dos grampos;
L _m :	Distância entre medidas (inclinômetro);
L _{bulbo} :	Comprimento do bulbo;
L _p :	Comprimento do grampo na zona passiva;

L _{inj} :	Comprimento do trecho injetado do grampo (ensaio de arrancamento);
L _{TT} :	Comprimento do cabo de aço do "tell tale";
L _{livre} :	Comprimento do trecho livre do tirante;
L _{1:}	Fio compensador 1;
L _{2:}	Fio compensador 2;
L _{3:}	Fio compensador 3;
L _i :	Voltagem dos terminais da ponte de Wheatstone, obtida por tratamento estatístico, das leituras na data considerada;
L _o :	Voltagem dos terminais da ponte de Wheatstone, obtida por tratamento estatístico, das leituras na data inicial da instrumentação;
LVDT:	"Linear variable differential transformer";
l _o :	Trecho flexionado do grampo;
λ _ι :	Fator de carga;
M:	Momento fletor no grampo;
m _v :	Coeficiente de variação volumétrica;
M _{máx} :	Momento fletor máximo no grampo;
MAC:	Museu de Arte Contemporânea;
MEF:	Método dos elementos finitos;
MDF:	Método das diferenças finitas;
NATM:	"New Austrian Tunneling Method";
NA:	Nível d'água;
NAT:	Natural;
N(SPT):	Número de golpes do ensaio SPT;
N:	Parâmetro adimensional de rigidez à flexão;
n:	Porosidade;
n _o :	Porosidade inicial;
η:	Inclinação do paramento/parede com a vertical;
ν:	Coeficiente de Poisson do solo;
ν ₅₀ :	Coeficiente de Poisson do solo correspondente à 50% da carga aplicada na ruptura;
p _t :	Tensão aplicada pelo terreno na direção normal ao eixo do elemento de reforço;
p':	Média das tensões principais efetivas $\sigma'_1 e \sigma'_3$;
p:	Média das tensões principais totais σ_1 e σ_3 ;

p _f ':	Média das tensões principais efetivas na ruptura;
p _f :	Média das tensões principais totais na ruptura;
p _o (z):	Empuxos de terra atuantes;
p _{máx} :	Tensão máxima aplicada pelo terreno na direção normal ao eixo do elemento de reforço (pressão de reação do terreno);
P _{inj} :	Pressão de injeção da calda de cimento;
p ₁ :	Pressão limite do pressiômetro Ménard;
PR//:	Plano de ruptura paralelo à xistosidade;
PR⊥:	Plano de ruptura perpendicular à xistosidade;
Q:	Resistência mobilizada por unidade de comprimento;
Q _u :	Incremento de transferência de força última (resistência ao arrancamento por unidade de comprimento);
q _i :	Mobilização da resistência ao cisalhamento na interface solo- grampo;
q:	Semidiferença das tensões principais totais σ_1 e σ_3 ;
q _f :	Semidiferença das tensões principais totais na ruptura;
q _u :	Resistência solo-grampo;
q _s :	Resistência ao cisalhamento no contato solo-grampo;
R _T :	Resistência do grampo;
R _F :	Resistência à ruptura na face;
R _P :	Força resistente de arrancamento;
R _{g:}	Resistência elétrica desconhecida do "strain-gauge";
R _i :	Resistência elétrica nominal do "strain-gauge";
R:	Resistência elétrica do fio (em Ohms);
SG:	Solo grampeado;
SG0:	"Strain-gauge" (numeração);
SAD:	Sistema de aquisição de dados;
SPT:	Ensaio de Penetração Padrão ("Standard Penetration Test");
SPT-T:	Ensaio de Penetração Padrão com medição de torque;
SRM:	Solo residual maduro;
SRJ:	Solo residual jovem;
SAT:	Saturado(a);
SIC:	"Standard Incremental Consolidation";
S _h :	Espaçamento horizontal entre grampos;
S _v :	Espaçamento vertical entre grampos;
S _o :	Grau de saturação inicial;

S _f :	Grau de saturação final;
S _{máx} :	Máximo espaçamento entre grampos;
S:	Grau de saturação;
SUCS:	Sistema Unificado de Classificação dos Solos;
S _u :	Resistência não drenada;
SR:	Solo residual;
σ _{aço} :	Tensão de escoamento do aço;
σ _d :	Tensão desviadora;
σ _{df} :	Tensão desviadora correspondente à carga aplicada na ruptura;
$\sigma_{d_{50}}$:	Tensão desviadora correspondente à 50% da carga aplicada na ruptura;
σ _v :	Tensão vertical total;
σ'ν:	Tensão vertical efetiva;
σ'c:	Tensão confinante efetiva;
σ _h :	Tensão horizontal total;
σ _n :	Tensão de confinamento vertical (tensão normal);
σ _{ng} :	Tensão normal aplicada ao grampo;
σ _{1f} :	Tensão principal maior no instante da ruptura;
σ1:	Tensão principal maior;
σ3:	Tensão principal menor;
σc	Tensão confinante;
σ _{esc} :	Tensão de escoamento;
σa	Tensão axial;
σ:	Tensão total;
σ':	Tensão efetiva;
t:	Tempo;
T:	Força de tração no grampo;
TT:	"Tell tale";
T _{ensaio} :	Carga máxima de ensaio;
T _{trabalho} :	Carga de trabalho;
T _{escoamento} :	Carga de escoamento do aço;
T _{ruptura} :	Carga de ruptura do aço;
T _N :	Força normal máxima (carga que leva o grampo à ruptura por cisalhamento com o solo no ensaio de arrancamento);

T' _{máx} :	Carga máxima do ensaio de arrancamento;
T _{máx} :	Força de tração máxima;
T _{máx-s} :	Força de tração máxima obtida a partir dos resultados de análises de estabilidade global;
T _o :	Tração na cabeça do grampo (face da escavação);
T _i :	Carga de incorporação;
T _G :	Resistência à tração da barra de aço;
T _{pr} :	Força de tração na interseção com o plano de cisalhamento;
t _d :	Taxa de deslocamento
τ:	Tensão cisalhante;
τ _{mob} :	Tensão cisalhante mobilizada;
τ _r :	Resistência ao cisalhamento do solo;
τ _{máx} :	Resistência ao cisalhamento no contato solo-nata;
θ:	Teor de umidade volumétrica;
θ _t :	Inclinação do tubo do inclinômetro em relação à vertical;
θ _T :	Inclinação da superfície do terreno;
u _w :	Poro-pressão;
U _a :	Pressão intersticial de ar;
V:	Velocidade de cisalhamento;
V _{exc} :	Voltagem de excitação da ponte (alimentação);
W _{nat} :	Teor de umidade natural do solo;
w _o :	Teor de umidade inicial do solo;
W _f :	Teor de umidade final do solo;
X :	Distância do "strain-gauge" à face da escavação;
y _{sg} :	Distância entre os segmentos do grampo fletido;
y _o :	Deslocamento da cabeça do grampo;
Z:	Cota de instalação do grampo;
z _p :	Profundidade;